Chimie
A new 3D positioner for the analytical mapping of non-flat objects under accelerator beams
Publié le - Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
We report the development of a 3D positioner for the elemental mapping of non-flat surfaces of heritage targets and its implementation in the external beam of the AGLAE accelerator, a joint research activity of the IPERION-CH European program. The positioner operates in two steps: 1) object surface is digitized using a 3D scanner implemented in the beamline. Surface points are interpolated onto a rectangular grid suitable for beam scanning. 2) Object is scanned under the beam using X/Y/Z stages holding a hexapod robot for rotations. During scanning, target surface is positioned with the Z stage and oriented perpendicular to the beam using hexapod rotations. Areas up to 100 × 100 mm2 with a resolution of 50 µm and 30° curvature of can be mapped on objects of 200 mm and 5 kg max. System operation was tested by recording PIXE maps on the polychrome decoration of a curved porcelain pot.